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Understanding the driving mechanisms behind existing patterns
of vegetation hydraulic traits and community trait diversity is
critical for advancing predictions of the terrestrial carbon cycle
because hydraulic traits affect both ecosystem and Earth system
responses to changing water availability. Here, we leverage an
extensive trait database and a long-term continental forest plot
network to map changes in community trait distributions and
quantify “trait velocities” (the rate of change in community-weighted
traits) for different regions and different forest types across the
United States from 2000 to the present. We show that diversity in
hydraulic traits and photosynthetic characteristics is more related
to local water availability than overall species diversity. Finally, we
find evidence for coordinated shifts toward communities with
more drought-tolerant traits driven by tree mortality, but the mag-
nitude of responses differs depending on forest type. The hydrau-
lic trait distribution maps provide a publicly available platform to
fundamentally advance understanding of community trait change
in response to climate change and predictive abilities of mechanis-
tic vegetation models.

community trait assemblage | drought | forest inventory | mortality |
species diversity

Plant functional traits mediate tree responses to climate.
Differences in local environmental conditions strongly affect

which traits and community trait assemblages are successful.
Community trait assemblages also directly impact ecosystem
carbon uptake during average years and mortality risk and eco-
system resilience during drought events (1–4). Furthermore,
community hydraulic trait composition influences land–atmo-
sphere feedbacks by affecting water and energy fluxes from the
land surface to the boundary layer (5–8). Given that it is largely
unknown how ecosystems will respond to climate change and
particularly climate extremes, a deeper understanding of the fac-
tors controlling trait distributions across space and time offers a
mechanistic window into predicting climate change and extreme
event impacts on terrestrial ecosystems and the land carbon sink.
Climate is a determinant of community trait composition as

climate controls both which species occur in a community (i.e.,
climate constrains many species geographic ranges, see ref. 9)
and the abundances of species in a given community (10). Ex-
treme events linked to climate change have resulted in sub-
stantial shifts in species’ dominance (11) and species’ geographic
range limits (12, 13), particularly, in water-limited biomes (13–
15). Looking forward, climate extremes, such as severe droughts,
are projected to increase with anthropogenic climate change
(16–20) and drive increasingly dramatic shifts in plant ranges and
community composition (21), and thus community trait composi-
tion. Yet, despite widespread evidence of climate-driven shifts in
species’ ranges (12, 22–24), we have yet to diagnose the impacts of
climate change on the rates of change of many community-
weighted plant traits ("trait velocities" or the trait change per

year) that influence ecosystem function, are relevant to process-
based Earth system modeling, and influence plant fitness and
demographic rates.
When considering the underlying mechanisms driving species’

range limits, community composition, and Earth system re-
sponses to climate change, tree hydraulic traits are important
because they regulate ecosystem water and carbon fluxes (25).
The biophysics of stem water conductance (hydraulic conduc-
tivity through the xylem) and its drought-induced failure due to
embolism are central controls on water movement through the
soil–plant–atmosphere continuum (26–28). Indeed, several tree
hydraulic traits have been shown to be predictive of cross-species
drought mortality risk (2), and plant hydraulic transport and
hydraulic traits have recently been incorporated into the vege-
tation model components of several Earth system models (26, 27,
29). Thus, a better understanding of the climatic and de-
mographic processes underlying regional-scale hydraulic trait
distributions and trait velocities is important to advancing pre-
dictions of future ecosystem function.
Here, we leverage the Xylem Functional Trait Database

(XFT) (30) and the extensive US Forest Service Forest Inventory
and Analysis (FIA) long-term permanent plot network (31),
which contains >160,000 forested permanent plots across the
contiguous United States, to develop high-resolution trait maps
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based on species distribution and abundance. We then used the
trait maps, FIA-measured demographic rates, and 4-km spatial
resolution climate data from the TerraClimate dataset (32) to
quantify and diagnose the plant hydraulic trait velocities (rates of
change in community-weighted traits) for forests across the
United States for nearly two decades from 2000 to present. We
ask: 1) how do hydraulic and photosynthetic traits vary regionally
across the continental United States? 2) what environmental
factors affect diversity in traits, and how does diversity in hydraulic
traits relate to overall species diversity? 3) have community hy-
draulic trait compositions changed over the past two decades? 4)
what demographic and climatic drivers are associated with these
trait velocities? and 5) do responses vary by forest type or region?

Results and Discussion
We quantified spatial patterns in three hydraulic traits and one
photosynthetic trait that collectively represent metrics of species’
hydraulic efficiency and safety (2, 28, 33). Specifically, we con-
sidered water potential at which 50% of stem xylem conductivity
is lost (P50), hydraulic safety margin (HSM), or the difference
between the P50 and the minimum stem water potential typically
experienced, xylem conductivity per area of leaves distal to the
measured xylem segment (KL), and maximum photosynthetic
rate (Amax) (Fig. 1). We calculated community-weighted mean
trait values based on high-resolution species distribution and
abundance data from the FIA (approximately one plot for ev-
ery 2,428 ha of land). We found that photosynthetic and hy-
draulic traits varied substantially depending on regional climatic
and edaphic factors. Trait spatial patterns revealed drought-
tolerant traits throughout water-limited regions: strongly nega-
tive community-weighted P50 values in juniper (Juniperus species)
monocultures in central Texas and piñon (Pinus edulis)–juniper
woodlands in the Mountain West region of the United States co-
occurring with large HSMs (red and dark orange in Fig. 1A and
dark blue Fig. 1B). A notable exception to this high HSM pattern
in water-limited systems is that of velvet mesquite (Prosopis velu-
tina)-dominated woodlands (the negative HSM in southern Ari-
zona and New Mexico; light yellow, Fig. 1B) (34, 35). The slightly
negative HSM (meaning minimum stem water potential is more
negative than P50) combined with relatively high KL (blue, Fig.
1C) of velvet mesquite contrasts with the strongly negative P50
and high HSM of the piñon–juniper woodlands and suggests that

the driest wooded ecosystems may employ diverse physiological
strategies to cope with climate extremes. In the case of velvet
mesquite and the piñon–juniper woodlands, the contrasting pattern
of HSM is potentially indicative of mesquite species’ well-
documented deep roots, which can extend up to 50 m and pro-
vide access to perennial soil–water sources (36). Given a relatively
stable deep water reservoir, a large HSM would be unnecessary for
mesquite in most instances, despite sparse precipitation. The small
HSMs of mesquite systems, therefore, likely indicate a decoupling
of vegetation from the above-ground climate rather than high vul-
nerability to water stress. Finally, the sharp divide between eastern
hardwoods and drought-tolerant woodlands of Texas is clearly vis-
ible in multiple physiological trait patterns (Fig. 1 A and D).
We calculated the range in traits of co-occurring species at a

given FIA plot and found that the hydraulic trait breadth does
not scale with overall species diversity (Fig. 2 and SI Appendix,
Fig. S1). In particular, the much lower diversity forests in the
Mountain West region of the United States, which are composed
typically of two to three species, exhibited an equivalently large
range of P50 and HSM values as more diverse southeastern
forests (Fig. 2 A and B and SI Appendix, Fig. S1). This mirrors
patterns of mismatching taxonomic and functional diversity in other
systems (e.g., birds, ref. 37). The difference in measures of trait
diversity per unit of species diversity between Mountain West and
southeastern forests is likely reflective of landscape heterogeneity
driven by both the heightened seasonality in rainfall and temper-
ature in Mountain West forests and greater topographic relief
(38). Climate seasonality causes temporal heterogeneity in water
availability and temperature. Topographic relief can heighten
climate seasonality effects and creates spatial heterogeneity in
water availability, temperature, and radiation load. We hypothe-
size that both spatial and temporal heterogeneities facilitate the
co-occurrence of different physiological strategies (37). However,
since FIA plots are typically too small to capture topographic
variation (and Fig. 2 shows only within-plot α diversity), temporal
heterogeneity (climate seasonality) may be particularly important.
We further analyzed our trait maps to quantify changes in

community-weighted P50 and HSM, two traits shown to be
predictive of cross-species drought mortality patterns (26, 27).
We calculated differences between the community-weighted P50
and HSM from the initial to the final FIA censuses divided by
the length of the census period to quantify the trait velocity (trait

Fig. 1. Hydraulic and photosynthetic traits vary substantially across the continental United States. Spatial variations in community-weighted (A) water
potential at which 50% of stem xylem conductivity is lost (P50), (B) HSM, or the difference between the minimum stem water potential typically experienced
and the P50, (C) xylem conductivity per total area of leaves distal to the measured xylem segment (KL), and (D) maximum photosynthetic rate (Amax). White
space indicates nonforested regions or regions where trait coverage was less that 80% by stand basal area.
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change per year) in a given community and diagnosed the un-
derlying drivers of trait change. We first examined if there were
significant shifts in P50 and HSM and if changes depended on
forest type (angiosperm- versus gymnosperm-dominated). We
found strong evidence for a significant decrease in the inventory
mean P50, driven predominantly by decreases in P50 in gym-
nosperm forests (SI Appendix, Table S1). Additionally, we found
some evidence for a significant increase in the inventory mean
HSM in all forests for one data filtering method and for angio-
sperm forests with multiple data filtering methods (SI Appendix,
Table S1). Trait velocities of P50 and HSM are consistent with
selection for more drought-tolerant communities.
We next quantified and diagnosed the P50 and HSM trait

velocities over the past two decades by relating the rate of
change in P50 and HSM (in MPa y−1) to mortality rates (basal
area in m2 ha−1 y−1) and year of final census in the FIA. We
found significant decreases in P50 and increases in HSM in most
regions and forest types were associated with local mortality
rates (Fig. 3 A–C). Interestingly, we found evidence for signifi-
cant decreases in P50 and increases in HSM in gymnosperm-
dominated and western forests with measurement year, with
larger changes in stands censused more recently, which could be
indicative of an acceleration in the rate of change in P50 and
HSM (39, 40) (SI Appendix, Table S2 and Methods).
We further examined the regional climatic drivers associated with

changes in community-weighted P50 and HSM using the Terra-
Climate dataset (32, 41, 42). Of the environmental drivers tested
(see Methods), we found that CWD was most predictive of both
changes in P50 and HSM over the past two decades (Fig. 3D and E
and SI Appendix, Table S3). Specifically, regions with a higher
growing season CWD (higher aridity) experienced significant shifts
over the past two decades toward community-weighted P50s that
are more negative and significant shifts toward community-weighted
HSMs that are larger (e.g., more drought-tolerant communities).
Although broad trends existed across forest types and geographic
regions, some interesting differences were apparent. For example,
gymnosperm-dominated forests and forests in the western United
States exhibited significant shifts toward more negative P50 and
larger HSMs with increased CWD, whereas this trend was not ap-
parent in less water-limited eastern forests (Fig. 3 D and E).

Significant decreases in P50 and increases in HSM associated
with mortality were robust, even when species known to be suf-
fering nonclimate related mortality due to pests/pathogens, or
declines related to fire suppression were excluded from the
analysis. We performed sensitivity tests where we examined the
trait velocity-mortality relationship while excluding, in turn, P.
edulis (piñon pine) and Pinus contorta (lodgepole pine), which
suffered from bark beetle mortality, Quercus alba and Quercus
rubra (white and red oak), which have been reported to suffer
mortality resulting from due to long-term fire suppression (43),
Tsuga canadensis (eastern hemlock), which has suffered mor-
tality due to wooly adelgid, and Fraxinus pennsylvanica and
Fraxinus americana (green and white ash), which have been
attacked by the emerald ash borer, and found no significant
change between the rate of change in P50 and HSM relative to
mortality rates (SI Appendix, Table S2). Although our analysis
does not preclude other drivers from influencing forest de-
mographic rates and traits, it indicates that climate and water
availability are important drivers. Given that traits have changed
more in dry places (with higher CWD), and that trait changes are
associated with nonspecific mortality, our results indicate that
climate-driven mortality (either proximately or through interac-
tions with pest outbreaks, see refs. 44–46) is likely behind these
trait shifts. Indeed, a similar relationship between community
drought tolerance and water limitation has been observed even
in the wetter eastern forests of the United States after accounting
for confounding factors, such as forest age and anthropogenic
harvesting (47). We cannot rule out nonclimatic factors, such as
rising CO2, invasive pests, and legacies of fire suppression. How-
ever, if nonclimate factors are the main drivers of P50 and HSM
trait velocities, they, at least, appear to be making US forests more
drought tolerant.
Finally, we found that changes in HSM and P50 were co-

ordinated, regardless of forest type such that forests with a de-
crease in community-weighted P50 also often saw an increase in
HSM (Fig. 4 and SI Appendix, Table S4). Given that HSM is
defined as the difference between the P50 and the minimum
stem water potential typically experienced, coordinated shifts in
community mean HSM and P50 are indicative that minimum
stem water potential tends to decrease proportionally with P50.
Globally, P50 and HSM are only partially correlated across

Fig. 2. Substantial diversity in hydraulic and photosynthetic traits exists and is not solely related to overall species diversity. Spatial variations in community
trait range for (A) water potential at which 50% of stem xylem conductivity is lost (P50), (B) HSM, or the difference between the minimum stem water
potential typically experienced and the P50, (C) xylem conductivity per total area of leaves distal to the measured xylem segment (KL), and (D) maximum
photosynthetic rate (Amax). White space indicates nonforested regions or regions where trait coverage was less that 80% by stand basal area. Range values of
zero indicate monospecific forest plots.
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species (ρ = −0.54 across 577 species in the XFT database with
measures of both traits), meaning that increased drought toler-
ance (P50) and increased relative safety (HSM) do not neces-
sarily go hand in hand. However, among dominant North
American forest tree species, there is a strong correlation be-
tween P50 and HSM (ρ = −0.78 across 55 species with measures
of both traits), which, no doubt, drives the coordinated shifts in
community mean P50 and HSM found here. Persistent changes
toward more negative community-weighted P50s and larger
community-weighted HSMs have important implications for the
resilience of US forest communities in coming decades. P50 is
indicative of the amount of hydraulic stress a tree can sustain
before suffering hydraulic damage, so communities with more
negative P50s are expected be more resilient to increased routine
water stress. Communities with larger HSMs may additionally be
more able to withstand increased variability in water stress be-
cause of a larger buffer between the expected seasonal water
stress and the amount of stress that induces costly and potentially
lethal hydraulic damage. Coordination between HSM and P50
trait velocities indicates that forests may be more able to withstand
both a more stressful mean climate and increased climate vari-
ability and/or extremes.

While our results quantify trait velocities associated with shifts
in species composition documented in forest inventory plots, we
note that substantial intraspecific variation in plant traits exists
(48–50) and could be important to include in future regional trait
distribution estimates. We hypothesize that the mechanisms
driving intraspecific variation in traits, such as trait plasticity and/
or genetic variation have the potential to further buffer ecosys-
tems to novel climate conditions on top of changes in species
composition. Furthermore, HSM can be a challenging trait to
quantify because the minimum water potential measurement
(used in the calculation of HSM) is influenced by individual
study context and design, such as whether annual or interannual
minimum water potentials were reported and the severity of
water limitation during the period over which measurements
were collected. In our analysis, we were limited to the definition
used by the database compilers who define HSM as “the dif-
ference between the P50 and the minimum stem water potential
observed for a species” (51) rather than the difference between
the P50 and the minimum stem water potential during a period
of extreme water limitation as would occur during a drought.
Thus, interpretation of HSM results, particularly, between the
eastern and the western US forests, should be performed with

A

B C

D E

Fig. 3. Shifts in community trait composition toward more drought-resistant forests are associated with mortality and aridity but differ substantially depending
on region and forest type. (Top) Schematic of the mechanisms resulting in shifts in community weighted mean (CWM) trait composition and the subsequent trait
velocities including trait change through selective recruitment and growth or through selective mortality of trees with particular traits (A). Different colors
represent different species with distinct trait values. (Middle) Response coefficient between forest basal area mortality and community-weighted changes (final
minus initial inventory divided by inventory interval length) in key drought tolerance traits including (B) water potential at which 50% of stem xylem conductivity
is lost (P50) and (C) HSM for the inventory as a whole (Total), angiosperm forest types (Angio), gymnosperm forest types (Gymno), the eastern United States (East),
and the western United States (West). (Bottom) Standardized response coefficients between climatic water deficit (CWD) and community-weighted changes (final
inventory minus initial inventory) in (D) P50 and (E) HSM. CWD is calculated for mean growing season (May–August) for the inventory interval. For B–E, grouped
points are response coefficient estimates using different data gap filling and outlier screening methods (see Methods). Similar forest types are grouped by color,
error bars show 95% confidence intervals, and associated significance levels are in SI Appendix, Tables S2 and S3.
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caution because long-term trends indicate a stronger intensification
in water limitation in the western United States compared to the
eastern United States over the past several decades (52), potentially
resulting in a systematic bias in HSM estimates.
With this analysis, we developed open source trait maps that can

serve as a platform for mechanistic vegetation models to improve
geographic trait distributions for the continental United States
(53). Furthermore, we provide quantitative evidence for coordi-
nated changes in community-weighted mean P50 and HSM across
the United States over the past two decades, indicating that forest
communities have experienced compositional shifts toward more
drought-tolerant ecosystems since 2000. We found that these shifts
were larger in drier regions and were associated with tree mor-
tality. The concept of trait introduced in this analysis has utility
beyond quantifying the degree to which functional change has
occurred in a given community. Trait velocities have the potential
to mechanistically link communities’ “trait space” with the pre-
diction of forest mortality risk by identifying mismatches in the rate
of community trait adaptation and the rate of climate change (54).
Through the use of trait velocities and plant hydraulic trait maps in
hydraulically enabled trait-based vegetation models, it should now
be possible to rigorously partition the relative importance of
ecology (i.e., shifts in species composition and the impact on
community hydraulic traits) versus environment (changes in mean
climate and climate variability) on the terrestrial carbon cycle.
Such partitioning could inform both future conservation efforts as
well as climate change adaptation and mitigation strategies.

Methods
Forest Inventory and Analysis Data. We used the US Forest Service FIA long-
term permanent plot network to generate high-resolution hydraulic and
photosynthetic trait maps for the continental United States based on species
composition and abundance and to document and diagnose the evolution of
trait distributions across the United States from 2000 (when FIA protocols
were standardized nationwide) to the present. The FIA plots are set up on a
stratified systematic sampling design using a hexagonal cell grid (55). The
network contains >160,000 permanent plots sampling forests where tree
status (living/dead) is measured on a plot return interval that varies by state,
typically, every 5 to 10 y. Within plots, different condition classes can be
mapped and recorded separately, representing different land cover class
types, size classes, or other distinguishing characteristics. In our analysis, we
excluded plot-condition groupings with fire damage, human damage, or
other treatments so that we could isolate the effects of climate on the dy-
namics of community trait compositions. Given that condition classes with a
small plot fraction can overinflate forest basal area, we examined a plot of

forest basal area as a function of condition class plot fraction and found that
a forest condition class threshold >30% of an individual plot’s area was the
minimum threshold that filtered large basal area anomalies. Thus, we re-
quired a forest condition class to occupy >30% of a given plot’s area to be
included in the analysis.

Maps of Community-Weighted Trait Distributions and Trait Diversity. We cal-
culated community-weighted mean trait values, community trait range, and
quantified decadal-scale changes in community-weight traits between the final
and the initial inventory census by pairing plot-level species basal area abun-
dance derived from the FIA with plant hydraulic and photosynthetic trait data
from the XFT database (30). Plant hydraulic traits included the water potential
at 50% loss of hydraulic conductivity (P50), HSM, and xylem conductivity per
area of leaves distal to the measured xylem segment (KL). We mapped hydraulic
traits in conjunction with maximum photosynthetic rate (Amax; μmol m−2 s−1).
For species with multiple trait observations within the XFT (SI Appendix, Fig.
S2), we computed species’ means and included a number of sensitivity anal-
yses to account for method uncertainties in hydraulic trait measurements (see
below). This methodology neglects intraspecific variation due to environment
or tree life stage (48–50). While maps based on species mean values will not
capture the full spectrum of hydraulic and photosynthetic trait variabilities,
they offer considerable added information above basic species composition
and provide an important platform for understanding how and why traits
vary across space and time. Furthermore, it has been shown that species-level
averages are predictive of plant performance during and after drought (2, 3).

In our analysis, we included several measurement screening criteria for
data quality control in the XFT, data gap filling techniques, and to address
ongoing uncertainties in the plant hydraulics literature related to measuring
P50 (56). For the majority of analyses of P50, the calculation of HSM, and
phylogenetic imputing (described below), we performed the following ad-
ditional quality control on the data available in the XFT. We i) only used P50s
derived from branches (no petioles, leaves, or roots) and ii) filtered for
strongly R-shaped vulnerability curves (where we excluded P50 measure-
ments >−0.75 MPa, measurements with HSM <−2 MPa, and any measure-
ments where gravitational effects due to tree height were within 0.5 MPa of
P50). We refer to this, subsequently, as our “base-version trait dataset.”
Additionally, we performed a separate analysis on a conservative end-
member estimate of P50 measurements where we strictly selected for sig-
moidal vulnerability curves to avoid any artifacts associated with long-
vesseled species (57) resulted in coverage of only 91 species. We refer to
this, subsequently, as the “strict quality control version.” Finally, given the
evidence for a considerable phylogenetic signal in many plant traits (58, 59),
we developed a separate trait dataset where we phylogenetically imputed
missing traits based on genus means for genera with more than two mea-
sured species to increase trait coverage. Subsequently, we refer to this ver-
sion as the “phylogenetically imputed trait dataset.” As a slightly more
conservative imputation, we removed imputed values in genera with the top
25% highest within-genus CVs for each trait (SD was used for HSM), under
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Fig. 4. Trait velocities between HSM and water potential at which 50% of stem xylem conductivity is lost (P50) are coordinated. Shifts in P50 and HSM (MPa y−1)
for (A) the inventory as a whole, (B) angiosperm forest types, and (C) gymnosperm forest types. Each point represents an individual plot with at least 80% trait
coverage by basal area in the initial inventory, and hotter colors indicate a higher density of points. Dashed black lines show the ordinary least-squares regression
line of best fit. Spearman’s ρ and associated significance levels are in SI Appendix, Table S4.

8536 | www.pnas.org/cgi/doi/10.1073/pnas.1917521117 Trugman et al.

D
ow

nl
oa

de
d 

at
 N

O
A

A
 C

E
N

T
R

A
L 

LI
B

R
A

R
Y

 o
n 

N
ov

em
be

r 
16

, 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917521117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917521117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917521117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1917521117


the assumption that these genera likely showed the least phylogenetic sig-
nal useful for trait imputation. Results were qualitatively identical when
imputing with all genus means or only the least variable genera, so we
present results only using the latter imputation method. Genus means were
used as opposed to a more sophisticated phylogenetic imputation (e.g., ref.
58) because within-genus phylogenetic resolution was not readily available
from published phylogenies accessible through ref. 60.

After data quality control, we calculated community-weighted trait values
based on species basal area relative to the total plot basal area with trait cov-
erage at a given location. We also recorded the range (max and min) in species-
level mean trait values for each location with adequate trait coverage. Sum-
maries of trait data coverage for each trait are included in SI Appendix, Table S5.

In all statistical analyses, except where noted, we independently analyzed
our base-version trait dataset, the phylogenetically imputed version, and, for
P50 only, the strict quality control version. In all cases, only plot locations with
trait coverage of >80% by basal area in the initial census were included in
the analyses so as to not bias results due to poor species coverage. Our re-
sults are robust to these different levels of quality control and inventory
coverage (SI Appendix, Fig. S3 and Table S2).

Sensitivity of Community Traits to Climate and Demographic Drivers.Given that
HSM and P50 have been shown to be key traits for predicting species mortality
risk and productivity during periods of water limitation (2, 3), we further ana-
lyzed the change in community traits over the duration of the inventory period.
We calculated the change in community-weighted mean P50 and HSM between
the first and the last plot census to get ΔP50 and ΔHSM and looked at trait
sensitivities for the inventory across the entire United States as well as by forest
type (angiosperm versus gymnosperm) and geographic location (eastern versus
western United States). To categorize plots as angiosperm-dominated or
gymnosperm-dominated forests, we used the FIA “field type code” variable.
Eastern and western plots were divided by state with the dividing line running
west of Minnesota to Louisiana. Finally, we performed a series of sensitivity tests
to see if factors other than climate, such as pest, pathogen, or anthropogenic
fire suppression, were major drivers of tree mortality by excluding plots domi-
nated by species known to be associated with these factors. Specifically, plots
dominated by P. edulis (piñon pine), P. contorta (lodgepole pine), Q. alba, and
Q. rubra (white and red oak), T. canadensis (eastern hemlock), and F. pennsyl-
vanica and F. americana (green and white ash) were excluded each, in turn,
based on the plot FIA field type code. Collectively, these sensitivity tests help
unpack if known species suffering from severe bark beetle outbreaks (pines),
potential oak mortality due to long-term fire suppression (43), mortality due to
wooly adelgid (hemlock), and mortality due to the emerald ash borer are
driving significant relationships between HSM/P50 and mortality.

First, we looked for significant shifts in population mean trait distributions
in P50 and HSM between the first and the last inventory using the Wilcoxon
signed-rank test (given the lack of normality in trait distributions). Next, to
analyze trait responses to climate, we used climate variables from the Ter-
raClim dataset (32), which includes a number of climate metrics from 1956 to
2018 at a monthly time step and 4-km spatial resolution globally. We initially
tested a wide suite of climate variables including,CWD, the Palmer Drought
Severity Index (PDSI), precipitation, snow water equivalent, soil moisture,
daily maximum temperature averaged to the monthly level (Tmax), and at-
mospheric vapor pressure deficit (VPD). For each grid cell associated with a
FIA plot, we computed the growing season average (defined as June–August
given that all plots are in the Northern Hemisphere) averaged over the interval
between the first and the last census (which varies by plot according to the
state-specific remeasurement interval), growing season extreme (minimum for
PDSI and soil moisture and maximum for CWD, Tmax, and VPD) over the census
interval, and climatic anomaly (excluding PDSI which is, by definition, already
an anomaly) over the census interval relative to both 20-y and 30-y climatol-
ogies spanning from 1997 or 1987 to 2017, respectively. For snow water
equivalent only, we summed the entire water year (October–September) and
computed the census interval average, minimum, and anomaly.

Initial climate variable selection was based on three criteria: i) a lack of
collinearity, ii) biologically relevant climate stressors that capture multiple
elements of drought stress, and iii) a model selection algorithm that selected
climate predictors that showed significant associations with ΔP50 and ΔHSM.
We grouped predictors into categories of growing season means, extreme,
and anomalies (because, in many cases, means and extremes were highly

correlated). For each group, following standard approaches to deal with
collinear predictor variables, we first used a matrix of pairwise correlations
and removed any variable with high correlations (R > 0.5) with other pre-
dictor variables. Each pairwise correlation was performed, and the variable
with the lower correlation with the dependent variable was removed. We
further verified that variance inflation factors were less than 2.5 for all
predictor variables. This resulted in four climate predictor variables in each
mean, extreme, and anomaly category, CWD (a metric of total water
availability), PDSI (a metric of drought stress), soil moisture (a metric of root
zone water availability), and VPD (a metric of atmospheric dryness). Mean
CWD over the census interval proved to be most explanatory compared to
other predictors, extremes, or anomalies, so we opted to look at the sensi-
tivity of ΔP50 and ΔHSM to CWD.

Wequantified the regional-scale sensitivity of cumulative changes in P50 and
HSM to CWDby upscaling the data to 1.0° using grid-specific meanΔP50/ΔHSM
and grid-specific mean CWD according to the methods of ref. 47. We used
linear models and confirmed that there was no spatial autocorrelation be-
tween ΔP50/ΔHSM and CWD at the 1.0° scale using Moran’s I. All traits and
predictors were z-score standardized based on the ΔP50 or ΔHSM mean and
SD for each data subset and climate variable mean and SD for each grid subset,
making effect sizes comparable across traits and predictors. We looked at the
sensitivity of response coefficient magnitude and significance to plots with a
minimum of 80% trait coverage by basal area (61, 62) in the first inventory for
our base-version trait dataset, the phylogenetically imputed version, and the
strict quality control version (for P50 only).

To analyze the demographic drivers and quantify trait velocities ofΔP50 and
ΔHSM, we used all plots with trait coverage by basal area fraction of >80% in
the first inventory and linear models with ΔP50 or ΔHSM (in MPa y−1) as the
dependent variable and cumulative basal area mortality and date of the last
census (39, 40) measurement as the independent variables. Finally, we quan-
tified coordination between ΔP50 and ΔHSM using Spearman’s ρ. Correlation
coefficients and significance levels are presented in SI Appendix, Table S4.

Q-Q plots indicated overdispersion in both our trait-climate and trait-
mortality models that could not be accounted for using transformations.
Given the large sample size of FIA plots and the consensus that symmetric
overdispersion does not tend to bias parameter estimates, only significance
tests, we provide two estimates of response coefficient magnitude and
significance for each dataset version, one estimate including the entire
dataset, and one where we excluded outliers (identified as points with
residuals >2σ from the mean). This methodology resulted in six estimates for
response coefficients for P50 and four estimates for HSM. Coefficient esti-
mates from each technique are grouped in Fig. 3 and recorded in SI Ap-
pendix, Tables S2 and S3 in the following order: 1) base-version trait dataset,
2) base-version trait dataset with outliers removed, 3) phylogenetically im-
puted version, 4) phylogenetically imputed version with outliers removed,
5), strict quality control version (for P50 only), and 6) strict quality control
version (for P50 only) with outliers removed. We performed model selection
using Akaike information criterion including all possible variable combina-
tions, and model selection was performed using the MuMIn package (63).
Statistical analyses were performed in the R statistical environment (64).

Data and Code Availability. All forest inventory plot data are publicly available at
the US Forest Service’s FIA program website <https://www.fia.fs.fed.us/>.
Gridded trait maps are publically available at Figshare (DOI: 10.6084/m9.
figshare.11962710).
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